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Exact Analysis of Shielded Microstrip Lines
and Bilateral Fin Lines

A.-M. A. EL-SHERBINY, MEMBER, IEEE

Abstract— An exact analysis is presented for shielded microstrip and
bilateral fin lines. The method of analysis is based on function-theoretic
approach to solve a set of functional equations in the Fourier transform
domain, representing the independent excitation of LSE and LSM modes
in the systems without strip or fin conductors. The solution is obtained in
the form of highly convergent systems of algebraic equations, which allow
the accurate calculation of fields and the electrical parameters of these
lines at arbitrary frequencies.

I. INTRODUCTION

ICROSTRIP LINES and bilateral fin lines belong

to the general group of waveguiding structures com-
posed of planar thin conductors, supported by dielectric
layers and are frequently shielded by grounded conducting
planes. The group also includes many other structures such
as slot, coplanar, suspended strips, and various types of
fin-line configurations. These structures have the main
common advantage of ease of fabrication by printing tech-
niques and therefore they find growing field of application
as elements of microwave integrated circuits.

Among all these lines, suspended strip and microstrip
lines are the best known and have been extensively used for
quite a long time. Other lines, such as slot and fin-line
configurations were recently investigated for use at higher
microwave up to millimeter wave frequencies.

Microstrip lines have been thoroughly investigated by
many authors both theoretically and experimentally [1]-
[21]. However it seems that the problem has not yet been
solved completely as evidenced by the considerable dis-
crepancies between the published results remarked [21]. In
fact most methods of analysis suffer from serious limita-
tions and usually include assumptions that may lead to
considerable uncertainty in the obtained results. Thus,
most design calculations are still performed using the early
quasi-static (TEM) results of Wheeler and others [1]-[4].
At relatively low frequencies, as long as the longitudinal
field components have no significant values, the TEM-
representation gives sufficiently accurate description of the
propagation properties. At higher frequencies, due to the
presence of the dielectric, wave effects become evident as
revealed by the dispersion, change of wave impedance, and
the presence of higher modes. These effects cannot be
accounted for within the frame of the TEM theory. There-
fore many authors tried to consider the complete problem
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of propagation of waves in such lines.

If purely numerical and qualitative methods are ex-
cluded, some general approaches can be distinguished. In
some papers the problem has been attacked by transforma-
tion to systems of coupled integral equations, which were
solved by different methods: moments, Galerkin, and vari-
ational [7], [16], [18]. The solution of these equations is not
a simple task because of the complicated forms of the
kernels and the fact that the kernels usually have singular-
ities of the static type. To overcome these difficulties the
spectral domain approach has been suggested [12], where
integral equations are replaced by functional equations and
the transforms of the kernels are sufficiently simple in
form. Microstrip lines have also been treated by the singu-
lar equations method [8], where the singularities in the
kernels are separated out. For the calculation of lines with
finite thickness the field matching technique is specially
useful [9], [11]. The method of transverse resonance was
applied in [17] using the results of the problem of diffrac-
tion of plane wave over the edge of a semi-infinite parallel
plate transmission line. A summary of the basic methods of
analysis is given in [15].

Unilateral and bilateral fin lines were introduced as
alternatives to microstrip lines for use at higher frequencies
[23]-[25]. They were investigated by several authors using
different approaches [26]-[29]. In view of the fact that fin
lines are nearly always mounted in waveguides, there has
been a general tendency to consider them as modified
forms of ridged guides. This tendency reflected on the
methods of analysis used, which are in fact very similar to
those used for the treatment of ridged guides and wave-
guide discontinuities. The waveguiding properties of the
gap between fins, regardless of the waveguide housing
itself, were almost overlooked. In fact, fin lines are able to
support guided waves even when the housing is removed
altogether, as the fields are concentrated in the gap regions.
In the following a method, based on modified Wiener—Hopf
technique is applied for the analysis of shielded microstrip
and bilateral fin lines without side walls. The formulation
of the problem is exact and no assumptions were made
during the solution. The high rate of convergence obtained
allows essentially accurate determination of the electrical
parameters of these lines.

II. FORMULATION OF THE PROBLEM

Consider the dual structures shown on Fig. 1, compris-
ing symmetrical strip and bilateral fin lines with two
symmetrically located shields. The width of the strip con-
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Fig. 1. Symmetrical stripline and bilateral fin-line configurations.
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Fig. 2. Microstrip and bilateral fin-line models.

ductor or the gap between fins is denoted by W, the
thickness of the dielectric is 2d, and d,, is the distance
between the dielectric surface and the shield. The relative
permittivity and the permeability of the dielectric are «,,
p,, respectively, while those of free space are €y, p,.
Fundamental mode fields of microstrip and bilateral fin
lines correspond to electric and magnetic wall symmetry,
respectively, in the strip and fin-line configurations of Fig.
1 with respect to the plane at the middle of the dielectric
layer, leading to the basic models of Fig. 2. The Cartesian
axes x, y, z are chosen as shown.

Considering the structure without the strip or fin con-
ductors, which is in fact a dielectric loaded parallel plate
waveguide, we assume a surface current distribution
J(,2), J( . z) to flow over the dielectric surface. Surface
currents will excite a field with electric field components
tangential to the dielectric surface given by E (0, y, z),
EL0, y, 2).

The dependence of fields and currents on time ¢ and the
longitudinal coordinate z is taken in the form e*Y?~ 9,
where vy is a real propagation constant and w is the angular
frequency. Fields and currents are expressed in terms of
their Fourier transforms, defined for a function f(y) as

f)= [ fy)eroay.

The general relation between the transforms of the tangen-
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tial electric field components and the surface currents can
be expressed as

Ey(o’ a):Gll(“)-];(a)+G12(“)~];(a)

Ez(0>a)ZGZI(a)J;(a)—i_GZZ(a)jz(a) (1)

where G,,, are the transforms of the elements of the dyadic
Green’s function of the structure.

Functional relations (1) are equivalent to a pair of
coupled integral equations in the space domain. Introduc-
ing the new variables U,,U,, F,, F,, as linear combinations

f,J Ey, E, in the transform domain

of J ,J
F(a)= —aEy +vE,

,V, z?
U@)=—ad, +.
()

Ua)=vJ, +al, F(a)=YE, +aF,

the set of equations (1) is diagonalized to the form
iweox (@) Fy(a)=U(a)
x2(@)Fy(a@)=iwpUy(a). (3)

Functions x,;, x, can be recognized as the transforms of

inverse Green’s functions for sources of pure LSM and

LSE wave types, respectively, in the loaded guide without

strips or fins. They have their zeroes rather than poles,

coinciding with the propagation constants of these modes.
Explicit expressions for x,, x, have the form

coth R,d, 4 coth Rd
R, " R

xi(@)=

x2{@)=Rycoth Ryd, + ‘uiRcoth Rd

electric wall symmetry (microscope case)

or
__cothRyd, tanh Rd
X1= R o te r R
X, =RycothR,d,+ %Rtanh Rd
for magnetic wall symmetry (fin-line case)
and

Ry=\a*+y*—k2,

R= a2+'Y2—k2,

kg =weop,
k*=e,u k3.

Equations (3) are the starting point for the following
discussion.

IIL.

The set of functional relations (3) can be used for the
solution of the problem of propagation in the microstrip
line. If the strip conductor is assumed to be thin and
ideally conducting, then the following boundary conditions

F1ELDS IN THE MICROSTRIP LINE
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should hold:
E(0,y)=0, O0<y<w Jy(y)ZO,} y<0
E(0,y)=0, O0<y<W J(y)=0,) y>w. (4)

Boundary conditions (4) will reflect on the properties of
the functions F|, F,,U,, U, as follows.

1) U,,U, will be entire functions having algebraic behav-
ior on the upper half of the a-plane.

2) F), F, can be expressed as

F(a)=F (a)xe"F(—a)
and
F(a)=F () Fe""E™(—a).

Functions F,", F,~ are regular in the lower half-plane and
have algebraic behavior for large a. Upper signs refer to
modes with symmetrical longitudinal current distribution
on the strip, while lower signs to antisymmetrical modes.

Therefore, for the microstrip line the following func-
tional equations can be written:

1
iweoX,

U(e)=F (a)xe"F~(—a)

8o U(a)=F, () Fe™Ey( —a).
N 2

(5)

Equations (5) allow solution using modified Wiener— Hopf
technique [22].

It can be easily seen, that x;, x, are meromorphic func-
tions having their poles and zeroes lying symmetrically
relative to the point of origin a«=0. Depending on
frequency, some of them are real (when the medium is
lossless), while all others are imaginary. Poles of x, x,
coincide, except for the points defined by R, =0, R=0
where x, has poles while x, is regular. These poles repre-
sent the propagation constants of waveguide modes in the
strip region. Poles with positive imaginary part will be
denoted by a, while the zeroes of x,, x, by »,,0,, respec-
tively.

Factorizing x,, X, to factors x;", x5 regular and having
no zeroes on the upper half-plane, and x; , x, having the
same properties on the lower half-plane, the relation be-
tween the plus and minus factors is given by

Xl_,z(a):Xftz(’"a)-
Following the standard Wiener— Hopf procedure, multiply-
ing equations (5) by x;, x5, ., separating the plus and
minus parts and taking into account the asymptotic behav-

ior of different terms as determined by the edge conditions
we write

err(a)i[e'“erFr(—a)]‘=

X;Fz_(a)"_“[ “Fxz By (= "‘)] (6)
where [ ]~ denotes the plus and minus parts of f and P, Q

are some constants.
As the minus terms have only pole singularities on the
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upper half-plane, they can be expanded as follows:
X (F (0% 3 ey (—a,) REX)
m=0 m
Xz ()5 (a)F § e'“ng*(—am)w:Q.

1 a—a,

(™)
Equations (7) can be solved either by direct iteration or by
transformation to systems of linear algebraic equations for
the unknown coefficients F\,(—a,,). The presence of the
exponential factors e'*»", where all a, except a, are
imaginary, guarantees high rate of convergence of both
methods.

Introducing the notation

PA,=x; (—a,)F (—4,)
0B, =x; (e, )5 (~a,)

(7) can be transformed to the following inhomogeneous
systems of equations for A,,, B

A, =1+ 2

+a m n:O’l,...

(8)

B,=1+ E o +a B,,, n=1,2,--

Coefficients £,, {, are given by

guResxl(a) W
" X1( a)

_ _ Resx; (a,) e
§ Xz( 0‘) )

Signs in (8) are taken to correspond to the fundamental
symmetrical microstrip mode.

When the strip width is not too small, systems (8) are
rapidly convergent and can be effectively solved by itera-
tion techniques to practically any required degree of accu-
racy. Once 4,, B, are determined, functions F|~, F,~ can
be obtained through the expressions

F,”(a):—)—(—_—{l— ?0 EnanA"}

1 =g &7

5 _f_B}
n=1 n

_, a4 a

F;(a>=;<%{1— ©)

It should be noted, that until this point, fields of LSM and
LSE types were treated quite independently. This is the

.main advantage of the introduction of the variables

F,, F,,U,, U,. However, fields in microstrip lines should be
of the hybrid type and LSM, LSE fields are necessarily
coupled. This coupling is actually present as P and Q have
to satisfy certain relations so as to achieve physically
proper field behavior.

Once Fy, F,,U,,U, are determined from the solution of
(8), the physical variables Jy, JZ, E E can be retrieved
through transformations inverse to (2) These inverse linear
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transformations are singular at values of a given by a=
+ivy. Since J J are entire functions, the constants P and
Q must be chosen such that these singularities are cancelled
out. This is achieved when U, and U, satisfy the relations

U(=iv)=ily(xiy)=0
which can be shown to be equivalent to
F(%iy)=®iF,~ (xiy)=0.

(10)

Condition (10) leads to a set of two homogeneous linear
equations in P and Q. For nonvanishing fields the determi-
nant must be equal to zero. This determines the possible
values of the propagation constant y and the ratio P/Q
which can be looked upon as a measure for LSM-LSE
field coupling.

The wave impedance of the microstrip line, which is
taken to be the ratio of quasistatic voltage at the strip
center to the total longitudinal current flowing on the strip,
can be expressed directly through the function F;™:

1 Y Fl_(_aO) eiaOW/2
Fi (0)  x:(0)

where a, is the zero-order pole of x, given by
=yk?—vy2.

IV. WAVE PROPAGATION IN BILATERAL FIN LINES

7 = Y
0
2a, weg

In this case the presence of fins will impose boundary
conditions dual to (4):

J(y)=0, O<y<w

J(y)=0, O0<y<w
E(0,y)=0, y<0, y>W
E(0,y)=0, y<0, y>W. (11)

To satisfy boundary conditions (11) the following proper-
ties must be prescribed to the F and U functions: 1) F), F,
are entire functions having algebraic behavior on the upper
half-plane; 2) U,, U, for fin-line modes with antisymmetri-
cal longitudinal currents should be represented in the form

U(a)=U, (a)+e"U (—a)

and

U(a)=U; (a) =", (—a)
where U,”,U,” are functions, regular on the lower half-
plane.

The set of functional equations for the bilateral fin-line
problem can be written

iwegx (@) Fy(a)=U," (a)+e YU (—a)

o XA OE(@) =0y (@) =Ty (~a)

(12)

where x,, x, are the inverse Green’s functions for fields
with magnetic wall symmetry.
Following the same procedure used for the microstrip
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problem, functions U;,U,” can be represented in the

form

U;(a)=er(a>{1—

and

where 4,, B, are determined from the following systems of
equations

_En

A-1+2 Sy A

—1"

— m
B, =1+ g o B
m=1 "1

m

n:l,z’...

n=1,2,---. (13)
P and Q are yet undetermined constants and the coeffi-
cients £, §,, are given by

EAON) -

X)) ¢

E2(CA

Xz(" )

v,, 0, are the roots of x,, X2 lying on the upper half-plane,
most of which are imaginary. Therefore except for very
narrow-gap fin lines, systems (13) are highly convergent
due to the exponential factors in £,,{, and 4,, B, can be
easily calculated to any required degree of accuracy. The
constants P and @, as in the case of microstrip lines, are
determined by the analyticity of the transforms of surface
currents and tangential electric field components. To cancel
the singularities introduced by the inverse transforms from
F,, and U, to g, EZ the following equivalent

v z’

conditions have to be satlsfled:
Fi(xiy)*iF(=iy)=0
U (xiy)*xil, (xiy)=0.

Therefore P and @ satisfy two homogeneous linear equa-
tions, the simultaneity of which determines the possible
values of y and the ratio P/Q, indicating the field cou-
pling. The impedance of the bilateral fin line, which will be
taken as the ratio of the quasi-static gap voltage to the total

longitudinal current on one of the fins, can be expressed
directly in terms of the U functions as

_ 2wpgi U, (0)
o Xz(O) U (0)°

£=—

==y

V. PHYSICAL INTERPRETATION AND NUMERICAL
RESULTS

The properties of propagation in microstrip and bilateral
fin lines as determined by the solution of the sets (8), (13)
are dependent mainly on the behavior of poles and roots of
inverse Green’s functions x,, x,. It is easy to show that
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poles and zeroes are either real or purely imaginary, i.e.,
the squares of their values are always real. Moreover, they
form interleaving sequences, thus between any two poles
one root can be found and vice versa.

Considering the case of the microstrip line, poles com-
pose two sets:

a,=\k*—y*—(nm/d)’

by =\k§—1*—(nm/d,)’

where n=0,1,2,--- for x, and n=1,2,--- for x,. These
poles correspond to the waveguide modes in the strip
region 0<y<< W, between the strip and the base conductor
and the strip and the shield. Zeroes correspond to the
loaded guide modes in the external regions y<<0, y>W.
Poles and zeroes are arranged in the following manner:

(a2 b? V2)<V12 <a}

n>¥n*"n
2 12 2 2 2 2
(a2,b2,02)<o? <bi<a}

where (a2, b2, »?), (a2, b2, 62) denote the sets of all other
poles and roots.

For unattenuating propagation, all zeroes must be imag-
inary, otherwise power will be lost by radiation in the
broad-side directions. Therefore considering the pole-root
relation the only real pole is a,, corresponding to the
lowest order TEM parallel plate gnide mode in the region
beneath the strip. All other modes are decaying in the
y-direction away from the edge positions, where they are
excited. Therefore it can be concluded, that the field in the
microstrip propagates essentially in a multiple reflection
mode as a result of total reflection of TEM-waves in the
strip-ground plane region propagating at angles =y, y=
cos '(y/k) to the z-axis from strip edges. In case of
narrow strips or at low frequencies this picture is distorted
by the coupling of the strip edges. In case of wide strips or
at high enough frequencies this coupling becomes less
significant and only the lowest order TEM-mode in (8)
with n=0 should be considered. This has been verified
actually by direct computation.

The case of bilateral fin lines is somewhat different due
to the specific zero-pole behavior. Thus, propagation of
unattenuating waves in bilateral fin lines without side walls
necessitates that all poles of x,, x, should be imaginary.
Otherwise the excitation of waveguide modes in the regions
y<<0, y>W would render the main wave leaky. The poles
form the sets

Vel g)ed
iz —y? = (nm/d,)

Therefore the allowed values of y are limited to the range

k> >v?*>max (k2, k*—(n/2d)’}.

For this range of y all propagation constants of LSM and
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LSE modes in the gap region are imaginary, except for the
lowest order LSE mode corresponding to the first root of
X,. This root, denoted by ¢,, can be either real or imagin-
ary. Depending on the value of o,, two modes of propaga-
tion in fin lines can be distinguished. When o, is imaginary
the field in the gap region has a quasi-static character and
all coefficients £, §, are real. When o, is real, the field
propagates in a waveguide mode, guided by multiple reflec-
tions of the surface wave from fin edges, where conditions
of total reflection exist as all waveguide modes are evanes-
cent. Computations have shown, that the two modes are
possible. Quasi-static mode dominates at low frequencies

.while the waveguide mode is dominant at high enough

frequencies.

Calculations revealed a curious behavior of the disper-
sion curves of fin lines at different gap widths in the
transition region between quasi-static and waveguide
modes. It was found that these curves, regardless of the gap
width, intersect at a common point on the line representing
the dispersion characteristics of the surface wave mode
corresponding to o,. This can be explained by the fact that
the effect of width of the gap on the dispersion characteris-
tics is different in the two regions. Thus in the quasi-static
mode smaller gaps tend to lower the phase velocity due to
field concentration in the dielectric. In the waveguide mode
this effect is reversed as wider gaps tend to decrease the
phase velocity towards the value for the free surface wave
velocity. This effect is analogous to the effect of width in
rectangular guides. Therefore the family of dispersion
curves at different widths should have an intersection point
where the effect is reversed.

Following this analysis it must be remarked that the
bilateral fin line is sensitive to geometrical imperfections
violating the symmetry of the field, e.g., relative displace-
ment of the gaps. In this case the fundamental TEM mode
in the dielectric filled waveguide between the fins will be
excited, leading to loss of power in the side directions in
the fin lines without walls or to strong coupling to the walls
if they are present.

Computations were performed for microstrip lines with
high and low e, dielectrics ¢, =9.7, 2.32 for different strip
widths and the dependence of effective dielectric constant
€. and line impedance on frequency is illustrated by Figs.
3 and 4, where the approximate results obtained by using
only one term in (8) are also shown as dashed lines.
Coincidence of the approximate and exact calculations
over a considerable part of the frequency interval indicates
the high rate of convergence of the infinite sets (8), spe-
cially at high frequencies. Moreover, this confirms the
suggestion about the nature of propagation in microstrip
lines.

Fig. 5 shows the dependence of the P/Q ratio upon
frequency. At low frequencies LSM field component
dominates, justifying the quasi-static TEM theory at these
frequencies, at least for lines with wide strips.

Results of computation of the dispersion characteristics
and wave impedance as functions of frequency are shown



674

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-29, NO. 7, JuLY 1981

Effective dielectric

3

constant

eff w/d=4.0

Exact
-~-- Single-mode

approximation

ormalised freq. k

100

9c

8c

70

(19
50

40

30

20

10

T T T T

.0

2

Wave 1impedance %
o

Chms

w/d=0.5

Fig. 3

®

. (a) Dispersion characteristics of microstrip line. €,=9.7, p, = 1.0,
dy/d=10.0. (b) Variation of microstrip line impedance with frequency.
€,=97,1,=10,d,/d=100.

)

100

£C

€0

4G

Effective dielectric

i

&

eff

constant

normalised freg. k

T T T
}0

2

Wave 1mpecance Zo

b Chms

normalised freqg. k

T T

2

.0

b

Fig. 4. (a) Dispersion characteristics of microstrip line. €,=2.32, p, =
1.0, d /d=10.0. (b) Variation of microstrip impedance with frequency,
€,=2.32,p,=10,d,/d=10.0.
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1.0, dy/d=10.0. (b) Wave impedance of bilateral fin line versus
frequency. €, =2.22, u, =10, dy /d=10.0.

on Fig. 6, for bilateral fin lines with different gap widths
on low dielectric substrate of the type usually used for
these lines. The dispersion curves clearly show the peculiar
behavior of these lines at the transition region.

In all graphs the normalized frequency variable

k=(2md/No)e,

where A is the free space wavelength, is used.
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