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Exact Analysis of Shielded Microstrip Lines
and Bilateral Fin Lines

A.-M. A. EL-SHERBINY, MEMBER, IEEE

A bstract— An exact analysis is presented for shielded microstrip and

bilateraf fin lines. The method of analysis is based on function-theoretic

approach to solve a set of functional equations in the Fourier transform
domain, representing the independent excitation of LSE and LSM modes

in the systems without strip or fin conductors. The solution is obtained in

the form of higfdy convergent systems of algebraic equations, which aflow

the accurate cafcufation of fields and the electrical parameters of these

fines at arbitrary frequencies.

I. INTRODUCTION

M ICROSTRIP LINES and bilateral fin lines belong

to the general group of waveguiding structures com-

posed of planar thin conductors, supported by dielectric
layers and are frequently shielded by grounded conducting

planes. The group also includes many other structures such

as slot, coplanar, suspended strips, and various types of

fin-line configurations. These structures have the main

common advantage of ease of fabrication by printing tech-

niques and therefore they find growing field of application

as elements of microwave integrated circuits.

Among all these lines, suspended strip and microstrip

lines are the best known and have been extensively used for

quite a long time. Other lines, such as slot and fin-line
configurations were recently investigated for use at higher

microwave up to millimeter wave frequencies.

Microstrip lines have been thoroughly investigated by

many authors both theoretically and experimentally [ l]–

[21]. However it seems that the problem has not yet been

solved completely as evidenced by the considerable dis-

crepancies between the published results remarked [21 ]. In

fact most methods of analysis suffer from serious limita-

tions and usually include assumptions that may lead to

considerable uncertain y in the obtained results. Thus,

most design calculations are still performed using the early

quasi-static (TEM) results of Wheeler and others [1]–[4].

At relatively low frequencies, as long as the longitudinal

field components have no significant values, the TEM-

representation gives sufficiently accurate description of the

propagation properties. At higher frequencies, due to the

presence of the dielectric, wave effects become evident as

revealed by the dispersion, change of wave impedance, and

the presence of higher modes. These effects cannot be

accounted for within the frame of the TEM theory. There-

fore many authors tried to consider the complete problem
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of propagation of waves in such lines.

If purely numerical and qualitative methods are ex-

cluded, some general approaches can be distinguished. In

some papers the problem has been attacked by transforma-

tion to systems of coupled integral equations, which were

solved by different methods: moments, Galerkin, and vari-

ational [7], [16], [18]. The solution of these equations is not

a simple task because of the complicated forms of the

kernels and the fact that the kernels usually have singular-

ities of the static type. To overcome these difficulties the

spectral domain approach has been suggested [12], where

integral equations are replaced by functional equations and

the transforms of the kernels are sufficiently simple in

form. Microstrip lines have also been treated by the singu-

lar equations method [8], where the singularities in the

kernels are separated out. For the calculation of lines with

finite thickness the field matching technique is specially

useful [9], [11 ]. The method of transverse resonance was

applied in [17] using the results of the problem of diffrac-

tion of plane wave over the edge of a semi-infinite parallel

plate transrnissiofi line. A summary of the basic methods of

analysis is given in [15].
Unilateral and bilateral fin lines were introduced as

alternatives to rnicrostrip lines for use at higher frequencies

[23]- [25]. They were investigated by several authors using

different approaches [26]–[29]. In view of the fact that fin

lines are nearly always mounted in waveguides, there has

been a general tendency to consider them as modified

forms of ridged guides. This tendency reflected on the

methods of analysis used, which are in fact very similar to

those used for the treatment of ridged guides and wave-

guide discontinuities. The waveguiding properties of the

gap between fins, regardless of the waveguide housing

itself, were almost overlooked. In fact, fin lines are able to

support guided waves even when the housing is removed

altogether, as the fields are concentrated in the gap regions.

In the following a method, based on modified Wiener-Hopf

technique is applied for the analysis of shielded microstrip

and bilateral fin lines without side walls. The formulation

of the problem is exact and no assumptions were made

during the solution. The high rate of convergence obtained

allows essentially accurate determination of the electrical
parameters of these lines.

II. FORMULATION OF THE PROBLEM

Consider the dual structures shown on Fig. 1, compris-

ing symmetrical strip and bilateral fin lines with two

symmetrically located shields. The width of the strip con-
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Fig. 1. Symmetrical stripline and bilateral fin-line configurations.
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Fig. 2. Microstrip and bilateral fin-line models.

ductor or the gap between fins is denoted by W, the

thickness of the dielectric is 2d, and do is the distance

between the dielectric surface and the shield. The relative

permittivity and the permeability of the dielectric are c,,

P,> respectively, while those Of free space are ~0 > PO.

Fundamental mode fields of microstrip and bilateral fin

lines correspond to electric and magnetic wall symmetry,

respectively, in the strip and fin-line configurations of Fig.

1 with respect to the plane at the middle of the dielectric

layer, leading to the basic models of Fig. 2. The Cartesian

axes x, y, z are chosen as shown.

Considering the structure without the strip or fin con-

ductors, which is in fact a dielectric loaded parallel plate

waveguide, we assume a surface current distribution

JJY, z ), .J,(Y, z) to flow over the dielectric surface. Surface
currents will excite a field with electric field components

tangential to the dielectric surface given by EY(O, y, z),

E=(O, y, z).

The dependence of fields and currents on time t and the

longitudinal coordinate z is taken in the form e’fyz–’”),

where y is a real propagation constant and a is the angular

frequency. Fields and currents are expressed in terms of

their Fourier transforms, defined for a function ~( y) as

~(a)=~~ f(y)e+ra~dy.
—cc

The general relation between the transforms of the tangen-

tial electric field components and the surface currents can

be expressed as

8Y(0, a)= Gll(a)~(a)+G1z( a)J(a)

iz(O, a)= Gzl(a)j(a)+GzJa) ~(a) (1)

where G~~ are the transforms of the elements of the dyadic

Green’s function of the structure.

Functional relations (1) are equivalent to a pair of

coupled integral equations in the space domain. Introduc-

ing the new variables U,, Uz, F1, Fz, as linear combinations,.. A
of JY, J,, EY, ~z in the transform domain

ul(a)=–cq+y~ F,(a)= –CYiy +Yiz

u.(a) =y)y +a~ F2( a) = yfiY + c@, (2)

the set of equations (1) is diagonalized to the form

ZUCOX1(a)F1(a) =Ul((X)

X2( LY)F2(CI)=ZWoU2 (a). (3)

Functions x ~,X2 can be recognized as the transforms of

inverse Green’s functions for sources of pure LSM and

LSE wave types, respectively, in the loaded guide without

strips or fins. They have their zeroes rather than poles,

coinciding with the propagation constants of these modes.

Explicit expressions for x,, x z have the form

coth Redo coth Rd
xl(~)= RO ‘(r R

xz(~)=ROcoth Rodo+~Rcoth Rd

electric wall symmetry (microscope case)

or

coth Redo tanh Rd
xl= R. ‘c, R

xz=Rocoth Redo + ~Rtanh Rd

for magnetic wall symmetry (fin-line case)

and

R=/ci2+y2-k2,

Equations (3) are the starting

discussion.

k; =u2~opo

kz =crprk:.

point for the following

III. FIELDS IN THE MICROSTRIP LINE

The set of functional relations (3) can be used for the

solution of the problem of propagation in the microstrip

line. If the strip conductor is assumed to be thin and

ideally conducting, then the following boundary conditions
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should hold : upper half-plane, they can be expanded as follows:

Ey(o, y)=o, O<y<w JJy)=o, \ Y<o

~z(o>Y)=o> O<y<w .lZ(y)=o, J y>w. (4)

Boundary conditions (4) will reflect on the properties of

the functions F1, F2, U,, U2 as follows.

1) U,, U2 will be entire functions having algebraic behav-

ior on the upper half of the a-plane.

2) FI, Fz can be expressed as

F1(a)=F1-(a)&eiaWF1 -(–a)

and

F2(a)=F2-(a)7eiaWF2- (–a).

Functions F,-, F2- are regular in the lower half-plane and

have algebraic behavior for large a. Upper signs refer to

modes with symmetrical longitudinal current distribution

on the strip, while lower signs to antisymmetrical modes.

Therefore, for the microstrip line the following func-

tional equations can be written:

1
—---- Ul(a)=ll-(a)&e’aWFl-( -a)
itiEOxl

YU2(a)=F2-(a)TeiaWF2( –a). (5)

Equations (5) allow solution using modified Wiener-Hopf

technique [22].

It can be easily seen, that Xl, Xz are mesomorphic func-

tions having their poles and zeroes lying symmetrically

relative to the point of origin a = O. Depending on

frequency, some of them are real (when the medium is

lossless), while all others are imaginary. Poles of x ~,x *

coincide, except for the points defined by R ~ = O, R= O

where x, has poles while x ~ is regular. These poles repre-

sent the propagation constants of waveguide modes in the

strip region. Poles with positive imaginary part will be

denoted by a. while the zeroes of Xl, Xz by v., o., respec-

tively.
Factorizing x ~,XZ to factors XT, x; regular and having

no zeroes on the upper half-plane, and x;, X; having the

same properties on the lower half-plane, the relation be-

tween the plus and minus factors is given by

Resx:(~~) =P

X~(a)F1-(a)f ~ eia”WF1-(–am)
a—am~=()

ResX; (a~)
X~(a)F2-(a)+ ~ e’amWF2-(–am)

a—am ‘Q.
~=1

xl:2(~)=x:2(–~).

Following the standard Wiener–Hopf procedure, multiply-

ing equations (5) by x ~–, X;, separating the PIUS and

minus parts and taking into account the asymptotic behav-

ior of different terms as determined by the edge conditions

we write

X; F2-(C0T[eL”WX; F2-(–~)1-=Q (6)

where [~] * denotes the plus and minus parts of j and P, Q

are some constants.

As the minus terms have only pole singularities on the

(7)

Equations (7) can be solved either by direct iteration or by

transformation to systems of linear algebraic equations for

the unknown coefficients Fl>( – am ). The presence of the

exponential factors e ‘a”w, where all am except a. are

imaginary, guarantees high rate of convergence of both

methods.

Introducing the notation

PAn=x;(–an)Fl-( –an)

QBn=x;(–an)F2-( –aH)

(7) can be transformed to the following inhomogeneous

systems of equations for An, Bn:

An=l+ ~ ~Am, ~=(),1, . . .
~=o an +am

Bn=l+ ~ ~Bm, ~=l,z,....
~=, an+am

(8)

Coefficients &, {~ are given by

*n= Re:xi-(%) ia W

xl (–%) en
Resx; (~n)elanw

{n=–

X;(–%) “
Signs in (8) are taken to correspond to the fundamental

symmetrical rnicrostrip mode.

When the strip width is not too small, systems (8)’ are

rapidly convergent and can be effectively solved by itera-

tion techniques to practically any required degree of accu-

racy. Once An, Bn are determined, functions F1–, F2– can

be obtained through the expressions

It should be noted, that until this point, fields of LSM and

LSE types were treated quite independently. This is the

main advantage of the introduction of the variables

FI, F2, U,, U2. However, fields in microstrip lines should be

of the hybrid type and LSM, LSE fields are necessarily

coupled. This coupling is actually present as P and Q have

to satisfy certain relations so as to achieve physically

proper field behavior.

Once F,, F2, U,, U2 are det~rr@qd f~om the solution of

(8), the physical variables JY, J,, E,, E, can be retrieved

through transformations inverse to (2). These inverse linear
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transformations are singular at values of a given by a=
~ iY. Since jY, j= are entire functions, the constants P ~d

Q must be chosen such that these singularities are cancelled

out. This is achieved when U1 and Uz satisfy the relations

uI(~iy)*iU2(*iy)=0

which can be shown to be equivalent to

F1-(tiiy)*iF2-( &iy)=0. (lo)

Condition (10) leads to a set of two homogeneous linear

equations in P and Q. For nonvanishing fields the determi-

nant must be equal to zero. This determines the possible

values of the propagation constant y and the ratio P/Q

which can be looked upon as a measure for LSM– LSE

field coupling.

The wave impedance of the microstrip line, which is

taken to be the ratio of quasistatic voltage at the strip

center to the total longitudinal current flowing on the strip,

can be expressed directly through the function F1–:

~ = 1 y F1–(–ao) eiaowi2——
0 2a. Oco F1-(o) x,(o)

where a. is the zero-order pole of x ~ given by

ao=~k2-y2.

IV. WAVE PROPAGATION IN BILATERAL FIN LINES

In this case the presence

conditions dual to (4):

Jy(y)=o,

Jz(y)=o,

Ey(o, y)=o,

E=(o, y)=o,

of fins will impose boundary

O<y<w

O<y<l”v

y<o, y>w

y<o, y>w. (11)

To satisfy boundary conditions (11) the following proper-

ties must be prescribed to the F and U functions: 1) F1, F2

are entire functions having algebraic behavior on the upper

half-plane; 2) Ul, U2 for fin-line modes with antisymmetri-

cal longitudinal currents should be represented in the form

U1(a)=U1-(a)+ezaWUl-( –a)

and

U2(a)=U2-(a)–e’aWU2- (–a)

where U1–, U2– are functions, regular on the lower half-

plane.

The set of functional equations for the bilateral fin-line

problem can be written

i@eoxl(a)Fl(a) =U1–(a)+ezaWU1–( –a)

&XZ(a)%(a)= Uz-(a)–eZawU2-(–a) (12)

where x,, x z are the inverse Green’s functions for fields

with magnetic wall symmetry.

Following the same procedure used for the rnicrostrip

problem, functions U1–, U2- can be represented in the

form

{
ul-(a)=Px;(a) 1– ~ &4n

~=1 a—vn 1

and

{
U2-(CX)=QX;(a) 1– ~ ‘Bn

~=1 ~—u n 1
where An, Bn are determined from the following systems of

equations

A~=l+ ~ ~A~, ~=l,z,...
~=, Vn+vm

Bn=l+ ~ ~Bm, rJ=l,2, . . . .
~=, Un+um

(13)

P and Q are yet undetermined constants and the coeffi-

cients &, {~ are given by

v., u. are the roots of x,, x z lying on the upper half-plane,

most of which are imaginary. Therefore except for very

narrow-gap fin lines, systems (13) are highly convergent

due to the exponential factors in t., (. and An, Bn can be

easily calculated to any required degree of accuracy. The

constants P and Q, as in the case of microstrip lines, are

determined by the analyticity of the transforms of surface

currents and tangential electric field components. To cancel

the singularities introduced by the inverse transforms from,.,. .
Fl, z and UI,2 to JY, J,, EY, ~z the following equivalent

conditions have to be satisfied:

F1(*iy)tiF2(&iy)=0

U1-(*iy)*iU2-(* iy)=0.

Therefore P and Q satisfy two homogeneous linear equa-

tions, the simultaneity of which determines the possible

values of y and the ratio P/Q, indicating the field cou-

pling. The impedance of the bilateral fin line, which will be

taken as the ratio of the quasi-static gap voltage to the total
longitudinal current on one of the fins, can be expressed

directly in terms of the U functions as

~ = 2tipoi U2-(0)

0 X2(O) u,-(o) “

V. PHYSICAL INTERPRETATION AND NUMERICAL

RESULTS

The properties of propagation in microstrip and bilateral

fin lines as determined by the solution of the sets (8), (13)

are dependent mainly on the behavior of poles and roots of

inverse Green’s functions x ~,x z. It is easy to show that
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poles and zeroes are either real or purely imaginary, i.e.,

the squares of their values arerdways real. Moreover, they

form interleaving sequences, thus between any two poles

one root can be found and vice versa.

Considering the case of the microstrip line, poles com-

pose two sets:

[

a. =~k’-y’ -(nn/d)2
an

ba=/k~–y2–(n~/dO)2

where n=0,1,2, . . . for xl and n=l,2, . . . for X2. These

poles correspond to the waveguide modes in the strip

region O<y < W, between the strip and the base conductor

and the strip and the shield. Zeroes correspond to the

loaded guide modes in the external regions y<O, y> W.

Poles and zeroes are arranged in the following manner:

where (%,b;, vj), (d %, an’) denote the sets of all other

poles and roots.

For unattenuating propagation, all zeroes must be imag-

inary, otherwise power will be lost by radiation in the

broad-side directions. Therefore considering the pole-root

relation the only real pole is ao, corresponding to the

lowest order TEM parallel plate guide mode in the region

beneath the strip. All other modes are decaying in the

y-direction away from the edge positions, where they are

excited. Therefore it can be concluded, that the field in the

microstrip propagates essentially in a multiple reflection

mode as a result of total reflection of TEM-waves in the

strip-ground plane region propagating at angles &~, ~=

cos -‘ (y/k) to the z-axis from strip edges. In case of
narrow strips or at low frequencies this picture is distorted

by the coupling of the strip edges. In case of wide strips or

at high enough frequencies this coupling becomes less

significant and only the lowest order TEM-mode in (8)

with n = O should be considered. This has been verified

actually by direct computation.

The case of bilateral fin lines is somewhat different due

to the specific zero-pole behavior. Thus, propagation of

unattenuating waves in bilateral fin lines without side walls

necessitates that all poles of x ~,x‘ should be imaginary.

Otherwise the excitation of waveguide modes in the regions

y< O, y > W would render the main wave leaky. The poles

form the sets

Lan F=FT7.
k&y ’-(mr/do)2

Therefore the allowed values of y are limited to the range

k2>y2>max{k~, k2-(r/2d)2}.

For this range of y all propagation constants of LSM and

LSE modes in the gap region are imaginary, except for the

lowest order LSE mode corresponding to the first root of

x‘. This root, denoted by u,, can be either real or imagin-

ary. Depending on the value of u,, two modes of propaga-

tion in fin lines can be distinguished. When u, is imaginary

the field in the gap region has a quasi-static character and

all coefficients $U, {~ are real. When UI is real, the field

propagates in a waveguide mode, guided by multiple reflec-

tions of the surface wave from fin edges, where conditions

of total reflection exist as all waveguide modes are evanes-

cent. Computations have shown, that the two modes are

possible. Quasi-static mode dominates at low frequencies

while the waveguide mode is dominant at high enough

frequencies.

Calculations revealed a curious behavior of the disper-

sion curves of fin lines at different gap widths in the

transition region between quasi-static and waveguide

modes. It was found that these curves, regardless of the gap

width, intersect at a common point on the line representing

the dispersion characteristics of the surface wave mode

corresponding to U1. This can be explained by the fact that

the effect of width of the gap on the dispersion characteris-

tics is different in the two regions. Thus in the quasi-static

mode smaller gaps tend to lower the phase velocity due to

field concentration in the dielectric. In the waveguide mode

this effect is reversed as wider gaps tend to decrease the

phase velocity towards the value for the free surface wave

velocity. This effect is analogous to the effect of width in

rectangular guides. Therefore the family of dispersion

curves at different widths should have an intersection point

where the effect is reversed.

Following this analysis it must be remarked that the

bilateral fin line is sensitive to geometrical imperfections

violating the symmetry of the field, e.g., relative displace-

ment of the gaps. In this case the fundamental TEM mode

in the dielectric filled waveguide between the fins will be

excited, leading to loss of power in the side directions in

the fin lines without walls or to strong coupling to the walls

if they are present.

Computations were performed for microstrip lines with

high and low c, dielectrics c.= 9.7, 2.32 for different strip

widths and the dependence of effective dielectric constant

c~ff and line impedance on frequency is illustrated by Figs.

3 and 4, where the approximate results obtained by using

only one term in (8) are also shown as dashed lines.

Coincidence of the approximate and exact calculations

over a considerable part of the frequency interval indicates

the high rate of convergence of the infinite sets (8), spe-

cially at high frequencies. Moreover, this confirms the

suggestion about the nature of propagation in microstrip

lines.
Fig. 5 shows the dependence of the P/Q ratio upon

frequency. At low frequencies LSM field component

dominates, justifying the quasi-static TEM theory at these

frequencies, at least for lines with wide strips.

Results of computation of the dispersion characteristics

and wave impedance as functions of frequency are shown
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on Fig. 6, for bilateral fin lines with different gap widths

on low dielectric substrate of the type usually used for

these lines. The dispersion curves clearly show the peculiar

behavior of these lines at the transition region.

In all graphs the normalized frequency variable

k=(277d/Ao)&

where AO is the free space wavelength, is used.

REFERENCES

[1] H. A. Wheeler, “Transmission-line properties of parallel strips

separated by a dielectric sheet,” IEEE Trans. Microwave Theo~
Tech., vol. MTT-13, pp. 172-185, Mar. 1965.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]
[10]
[11]

[12]

[13]

[14]

[15]

[16]
[17]

[18]

[19]

[20]

[21]

[22]

[23]
[24]
[25]

[26]
[27]

[28]
[29]

E. Yamashita and R. Mittra, “Variationaf method for the analysis

of microstnp lines,” IEEE Trans. Microwave Theoy Tech., vol.
MTT-16, pp. 251-256, Apr. 1968.
H. E. Stinehelfer, “An accurate crdculation of uniform microstnp

transmission fines;’ IEEE Trans. Microwave Theory Tech.3 vol.
MTT-16, pp. 439-444, July 1968.
T. G. Bryant and J. A. Weiss, “Parameters of microstrip transmis-

sion fines and of coupled pairs of microstrip lines,” IEEE Trans.
Microwbue Theo~ Tech., vol. MTT- 16, pp. 1021-1027, Dec. 1968.

J. S. Homby and J. S. Gopinath, “Numerical analysis of a dielectric
loaded waveguide with a microstrip line— Finite methods,” IEEE

Trans. Microwave Theoty Tech., vol. MTT- 17, pp. 684-690, Sept.
1969.

R. Mittra and T. Itoh, “Charge and potentiaf distributions in
shielded striplinesj’ IEEE Trans. Microwave Theoiy Tech., vol.
MTT-18, pp. 149-156, Mar. 1970.
E. J. Denlinger, “A frequency dependent solution for microstnp
transmission fines: IEEE Trans. Microwave Theoiy Tech., vol.
MTT-19, pp. 30-39, Jan. 1971.
R. Mittra and T. Itoh, “A new technique for the dispersion of

characteristics of microstrip fines,” IEEE Trans. Microwave Theory

Tech., vol. MTT-19, pp. 47-56, Jan. 1971.
G. Kowrdski and R. Pregla, AEU, vol. 25, no. 4, 1971.

_, AEU, vol. 26, no. 6, 1972.

M. K. Krage and G. I. Haddad, “Frequency-dependent characteris-

tics of microstrip transmission lines, IEEE Trans. Microwave The-
ov Tech., vol. MTT-20, pp. 678–688, Ott. 1972.
T. Itoh and R, Mittra, “Spectral-domain approach for calculating

the dispersion characteristics of microstrip lines,” IEEE Trans.
Microwave Theory Tech., vol. M’IT-21, pp. 496-499, July 1973.

“A technique for computing dispersion characteristics of—,
shielded microstrip linesj’ IEEE Trans. Microwave Theory Tech.,
VOI. MTT-22, pp. 896– 898, oct. 1974.
R. Mittra and T. Itoh, Advances in Microwaves, vol. 8. New York,
1974.

J. B. Knorr and A. Tufekcioglu, “Spectral-domain calculation of
rnicrostrip characteristic impedance,” IEEE Trans. Microwave The-

ory Tech., vol. MTT-23, pp. 725–728, Sept. 1975.

R. H. Jansen, AEU, vol. 29, no. 1, 1975.
A. T. Fizdkovskiy, Radiotekh. Elektron., vol. 21, no. 4, 1976.

L. A. Vainshtein and A. T. Fialkovskiy, Radiotekh. Elektron., vol.
21, no. 6, 1976.

R. H. Jansen, “High-speed computation of single and coupled
rnicrostrip parameters including dispersion, higher order modes, loss

and finite strip thickness,” IEEE Trans. Microwave Theoy Tech.,
vol. 26, pp. 75– 82, Feb. 1978.
A. R. van de Capelle and P. J. Luyaert, in IEEE G-MTT Symp.,

1978.

E. F. Keuster and D. C. Chang, “Appraisaf of methods for compu-

tation of the dispersion characteristics of open microstnpsfl IEEE

Trans. Microwave Theory Tech,, vol. MIT-27, pp. 691-694, July

1979.
R. Mittra and S. W. Lee, Analytical Techniques m the Theo~ of
Guided Waves. New York: Macmillan, 1971.
P. J. Meier, in IEEE G-MTT Symp. Dig., 1972.

Electron. Lett., vol. 9, no. 7, Apr. 5, 1973.
PYMeier, “Integrated fin-line millimeter components:’ IEEE
Trans. Microwave Theory Tech., vol. MTT-22, pp. 1209– 1216, Dec.
1974.
H. Hofman, AEU, vol. 31, no. 1, Jan. 1977.
A. M. K. Saad and C. Begemann, Microwaves, Opt. Acoust., vol. 1,
no. 2, Jan. 1977.

W. G. Hoefer, in IEEE GMTT Symp. Dig., June 1978.
A. M. K. Saad and K. Schunemarm, “A simple method for analyz-

ing fin-line structures’ IEEE Trans. Microwave Theo~ Tech., vol.
MTT-26, pp. 1002-1007, Dec. 1978.


